Se p 20 03 An analytical proof of Hardy - like inequalities related to the Dirac operator ⋆

نویسندگان

  • Jean Dolbeault
  • Maria J. Esteban
  • Luis Vega
چکیده

We prove some sharp Hardy type inequalities related to the Dirac operator by elementary, direct methods. Some of these inequalities have been obtained previously using spectral information about the Dirac-Coulomb operator. Our results are stated under optimal conditions on the asymptotics of the potentials near zero and near infinity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An analytical proof of Hardy-like inequalities related to the Dirac operator ⋆

We prove some sharp Hardy type inequalities related to the Dirac operator by elementary, direct methods. Some of these inequalities have been obtained previously using spectral information about the Dirac-Coulomb operator. Our results are stated under optimal conditions on the asymptotics of the potentials near zero and near infinity.

متن کامل

An analytical proof of Hardy-like inequalities

We prove some sharp Hardy type inequalities related to the Dirac operator by elementary, direct methods. Some of these inequalities have been obtained previously using spectral information about the Dirac-Coulomb operator. Our results are stated under optimal conditions on the asymptotics of the potentials near zero and near infinity.

متن کامل

Some Sharp L 2 Inequalities for Dirac Type Operators ⋆

Sobolev and Hardy type inequalities play an important role in many areas of mathematics and mathematical physics. They have become standard tools in existence and regularity theories for solutions to partial differential equations, in calculus of variations, in geometric measure theory and in stability of matter. In analysis a number of inequalities like the Hardy–Littlewood– Sobolev inequality...

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

2 00 8 Hardy inequalities for weighted Dirac operator

An inequality of Hardy type is established for quadratic forms involving Dirac operator and a weight r for functions in R. The exact Hardy constant cb = cb(n) is found and generalized minimizers are given. The constant cb vanishes on a countable set of b, which extends the known case n = 2, b = 0 which corresponds to the trivial Hardy inequality in R. Analogous inequalities are proved in the ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003